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ABSTRACT
Formulas are derived for the initial bias, variance, and spectrum of the
sample mean in finite state Markov processes. The focus is on application of

such expressions to the steady-state simulation problem.
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SIGNIFPICANCE AND EXPLANATION
~ Various techniques have been proposed for determination of confidence
intervals associated with steady-state quantities in simulation. Evaluation

of such procedures requires comparison of their performance on stochastic

AR AN

systems with known characteristics. In this paper, wc therefore derive
Ko 175 » L-', Varizre? A0d Spactroan -+ s

computable formulas for several quantities associated with finite state Markov

"v,:/-‘ [T B

chains, and discuss their relevance to the steady-state simulation problem.
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The responsibility for the wording and views expressed in this descriptive
summnary lies with MRC, and not with the author of this report.
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SOME ASYMPTOTIC FORMULAS FOR MARKOV CHAINS
WITH APPLICATIONS TO SIMULATION

Peter W. Glynn

1. INTRODUCTION

Consider the simulation of a stochastic process (xt : t » 0} for which

t
(==> denotes weak convergence). In many simulation applications, it is of interest to
determine confidanée intervals for r(f) 4 Ef(X), where f is some real-valued functional
defined on the state space of Xy This problem is known, in the simulation literature, as
the steady~state sgimulation problem, and a great deal of effort has been devoted toward its
solution; see Chapter 5 of Pishman (1978) or Section 8.6 of Law and Kelton (1982) for a
complete discussion of the problenm.

The evaluation of simulation methodology for the steady-state simulation problem
requires that one possess a class of models for which parameters of interest may be
calculated analytically. Behavior of the procedures on the models then provides a
"benchmark® from which to judge their overall performance. Our goal, in this paper, is to
establish a variety of formulas for finite state Markov chains (in both discrete and
continuous time) and to discuss the importance of these formulas in the context of
methodology evaluation.

One of the earliest technijues proposed for dealing with steady-state simulation
problems is the technique of replication. The simulator chooses t large, and simulates
the process up to time t, creating a sample path {x: :t 0 <3 <tl. The simulator
repeats this step m times, creating a collection {x: t 0<s<t)], 1<1i<m of m
independent replicates of the process. The parameter r(f) is then estimated by
t

r () =+ E | fixtras
L .
t mt ot o s
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Note that the independence of the replicates yields a central limit theorem, and a
consequent asymptotically valid confidence intexval. 1In any case, the mean square error of
the estimate r.(m,f) is given by
(1.2) B(r,(m,0) - (e)? = OPir (1,0))/m + BI(E)
where
bt(” =- xrt(I,t) - z{f) .

It i{s clear that for large m, the bias teram bt(t) is the primary contributor to the
aean square error. As a result, the initial bias term be(f) has attracted a great deal
of attention in the simulation literature; for a survey, see Wilson and Pritsker (1978).
Section 2 is therefore devoted to formulas for b,(f), and to a qualitative discussion of
initial bias.

More recently, a variety of single replicate procedures have been proposed. They rely
on the tact that for many processes X, satisfying (1.1), thers exists a constant s(f),

depending on the process ) such that
t

(1.3) e (f £(X_)s/t = x(£))/s(£) =~=> N(0,1)
0

vhere N(0,1) is a unit normal random variable (result (1.3) holds, in particular, for
finite state Markov chains). Confidence intervals based on (1.3) require consistent
estimators for the constant s2(f). In Section 3, formulas are derived for the constant
oz(!), thereby allowing the study and comparison of different estimators for nz(t).
These forsulas extend the work of Hazen and Pritsker (1980) on continuous time Markov
chains with diagonaligzable generators to the general case. Section 4 is devoted to
solution of several related conjectures of Hazen and Pritsker.
One well-studied class of estimators for s2(f) is based on spectral techniques. If

{'t} is a second order stationary process, it can be shown, under certain regularity

conditions, that .2(“ = 2%c(0), where c()) ia the spectrum of {xt) given by

-
(1.4) ey =& | o“‘oov(t(xo).f(xt))dt .

2 -t
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Several recent papers (see Heidelberger and Welch (1981a), (1981b), for example) have

proposed techniques based on estimating oz(t) via polynomial fitting to an estimated
spectrum in a neighborhood of zero. Section 5 therefore derives formulas for the spectrum
h corresponding to finite state Markov chains.

" Before concluding this section, it should be noted that the above discussion for

;;:' continuous time processes carries over, in an obvious wvay, to discrete time processes -

:;: this justifies the interest in formulas for discrete time Markov chains.




2, FORNULAS FOR THE INITIAL BIAS
Let {xn : n » 0} be an irreducible Markov chain of period d, with transition
matrix P, on state space B = {1,2,...,m}. Such a chain necessarily has a unique
stationary distribution wv = ('1,.--,1-) solving *P = %, Given a row vector
£' = (£(1),..+,2(m)) (f° denotes the transpose of f), it is well known that
1 nii £X ) » ot
N =0 k

with probability 1, for any initial distribution u = (u1,...,u.) (u1 - P{xo = §}). Let
@ n§1 )
b (u,t) = 8 |— £(X )) - ut ;
n »'n k=0 xk

here lu( ) stands for expectation under initial distribution u. Our objective is to
obtain formulas for the initial bias bn(u.t).
¥We will need the following standard results from Markov chain theory (see Kemeny and

Snell (1960), p. 70, 71, 100):
nd

(2.1) P+, as n + = where I, is a stochastic matrix

(2.2) B=(X+P+..+?¥)/a, where T has all rows equal to *

(2.3) w=pl=0%=n

(2.4) the inverse matrix ; = (I - 5)'1 exists, where 6 =pe-1I.

The matrix ; is called the fundamental matrix of the Markov chain. It is worth noting

that vhen P is aperiodic, the matrix ; has the representation ; - Eo {» - l!)k. Since
K=

the natural analog of 0 for tranoion£ chains is the zero matrix, it follows that the
fundamental matrix is a generalized form of the potential matrix (see Cinlar (1975), p.
196-7).

(2.5) Theorem. The initial bias bn(u,!) is given by

(2.6) b (w2 = u(z - P™)Pe/n .

Purthermore, if n = kd + i, where 0 < i < 4, then

(2.7) b (4, 8) = u(x = P'0)FE/n + 000"

where 0 < p < 1 (a sequence b, is 0(a,) if there exists K > 0 such that

b, < KlaI).

-4
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Proof. The bias can be written in the form

1 “E' ) X ) 1 “E' X
b (u,f) =~ u,P, . £(3) - u,w £(3) = — u(p = M}f .
n n k=0 1,4 i 13 1,9 i3 n k=0
Now, it is easily verified, using (2.3), that
nc1 k oy n
(2.8) I P -mm-9Q =1-p
k=0

from which (2.6) follows immediately, after postmultiplying through (2.8) by ;. Equation
(2.7) is a direct consequence of the geometric convergence of pnd to ﬂo (see Corollary
4.1.5 of Xemeny and Snell (1960)). ||

This result generalizes Theorem 7-15 of Heyman and Sobel (1982) (their proof requires
that P be aperiodic). We now illustrate the application of the theorem to a two atate

Markov chain. Let

1-a a
b 1~b

where a,b > 0 and 0 < a +b < 2. Then {xn} is aperiodic and
1

P=

v= a+bhb (b a)
with
2 1 b a 1 a -
F=——( ) + (- ) -
a+b'd a (a + b)z b b
Hence

1 n
bn(u,f) - — (an1 - buz)(f(i) - £(2)) + 0(p") .

(a + b)'n

A similar bias formula can be obtained for continuous time Markov chains. Let
(xt :t > 0} be an irreducible Markov jump process on state space E = {1,2,...,m}, with
generator Q (recall that Q generates xt in the sense that P(t) = exp(Qt), where
Pij(t) = P{xt = jixy; = 1}) and unique stationary distribution ¥ solving nQ = 0.

Retaining the notational conventions previously stated, set

t
1
b (u,f) = zu(gg £(X )ds) - *f .

-5-
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The following results are well known:

(2.9) P(t) + I, where I has all rows identical to =«
(2.10) P(OIN = MP(t) = 12 =1 .

We will also need the following lemma.

(2.11) Lesma. The inverse matrix F = (Il - Q)-‘ exists.

Proof. Using (2.10) and the fact that [0 = 0 = QN, observe that
t t

(2.12) (M- (f (P(s) -Mas + 1) = - [ Q exp(Qs)ds + I = I - exp(Qe) + 1 .
0 0

Then, letting Al = max{ ] '“13”' we have
1 3

- 9
[ 1(s) -Ntas = § [ 1(p(n) - MP(s)las ¢ ] 1p(n) - NI
0 n=0 0 n=0

which is finite, since P(1) is an aperiodic irreducible matrix and therefore P(n)
converges to I geometrically fast. Hence, letting t + @ in (2.12), we see that 01 - Q
has an inverse. ||

Initial bias for continuous time Markov chains is determined by the following theorem.
(2.13) Theorem. The bias bt(u,f) is given by

b (u ) = W(I = P(E)IFE/L = W(I - MFL/E + 0(e”%) ,
wvhere a is some positive constant.

The proof of this theorem is similar to that given in the discrete time case. It
should be pointed out that Theorem 2.13 generalizes a result of Grassman (1982) given for
f(kx) = k.

These initial bias formulas have several interesting properties. Pirst of all, we
observe that there exists a constant c(u,f) such that

b, (1 1) - etu,f)/e) + 0
for all k » 0. Hence, in any bias expansion of the form

5 2 -r-1
b, (u,£) = ) cylu £)/e” ¢+ 0(e™ ),
=1




it must be that c‘(u,f) =0 for R > 2. Secondly, for any § and £, there exists t
such that for s > t, either:

i) b.(u.!) decreases monotonically to szero, or

11) b.( u,£) increases monotonically to sero.
Hence, for s sufticiently large, the bias has a constant sign. Several proposed initial
bias procedures require this sign consistency property (see, for example, Schruben (1982),
ps 577). Of course, the above discussion is egually valid for discrete time chains

(provided one accounts for periodicity).
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3. VARIANCE FORMULAS FOR THE SAMPLE MEAN

A natural way to try to evaluate s(f) is to take the variance of both sides of

(1.3), yielding the formal relation

t
(3.1) t () fx rasse) + (e .
0

Por finite state Markov chains, relation (3.1) can be justified rigorously, in the sense

that it is correct that

1 2, 2
(3.2) t !'(:.{ £(x )as - xt)° + a%() 4

a similar result holds in discrete time. For continuous time Markov chains, (3.2) can be
proved by using the fact that {Xt : t 20} is ¢~mixing and then applying Theorem 20.1 of
Billingsley (1968). The discrete time version of (3.2) follows from Theorem 3 of Chung

(1966), p. 102. The following theorem therefore provides a formula for evaluation of

sd(e).

(3.3) Theorem. Let {xn :n>0} and {xt : t >0} satisfy the same assumptions as in

Section 2. Then,

n=1 - -
3.) a2 @] fx) - an? - grnz - me e 200me(r - Me + 2 ne™ - p)ply
n k=0 k n

t
(3.5) ex (3] £xas - ) = 200n(r - me + 2 grreece) - DR,
0 [ ] t

where T is a diagonal matrix with 'ru - '1'

Proof. The process {xn) is stationary under P (¢}, 80

n-1 n~1
1 - at)? - 2 -
(3.6) ne (o xzo £(x,) = )" = var £(x)) + £ k21 (n = K)cov (£(x)),£(X )) .

£3
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(3.7) cov_(£(X ), £(x.0) = § w1 £t - I wweire(g) = £rr@® - M
® o X 151 i3 ijij
and
n-1 - n=-1
(3.8) I m-P*-mmm-9 = § (n-x* -2
k=1 K=1

T ok Tk
=np- ] PranpP-M-=-] (Pr-M+1-10.
k=1 k=0

Applying (2.8) to the sum in (3.8), and postmultiplying through (3.8) by F yields

(3.9) "1 tn- K@ - o= - DF - 1= 2™R e - F
k=1

Since (N - 6) = ]I, it follows that [l = ﬂ;. Also, 6 = (Il - 3)(N - 5) so that
5; =1 - I and thus 5;2 = (Il - I);. These observations, together with (3.6), (3.7), and
(3.9), lead directly to (3.4). The proof of (3.5) is similar. ||

The right hand side of (3.5) can be algebraically rearranged, by using the identity
FP~-N=0- (14+ Q)-‘, to obtain Theorem 1 of Hazen and Pritsker (1980). Their
derivation required, however, that Q be diagonalizable. The foramula also extends
equation (16) of Grassman (1982) to general f. Formula (3.4) is an exact form of an
asymptotic result found on page 84 of Kemeny and Snell (1960).

We now apply Theorem 3.3 to determine sz(t) for the two state Markov chain studied

in Section 2. Routine calculations show that

ab(2 - a - b)

(a + b)3

82(£) = £'7(I - £ + 2£°TP(F ~ E = (£(1) - 2212 .

We can, in fact, extend Theorem 3.3 to cover arbitrary initial distributions.
(3.10) Theorem. Let (xn :n >0} and {xt : t >0} satisfy the same assumptions as in

Section 2. Then,

-
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n-1
1 2_ 2 1
n xu(; xgo t(x,) - we)" = s(6) + 0f3)

t
1 2_ 2 1
t ‘u(ig £(x_ )ds - w£)" = a%(f) + o) -

Proof. We prove only the case where {xn} is aperiodic; the periodic and continuous time

proofs require only simple modification. Let g(j) = £(j) - ®*f and observe that

¢ nf' )? Q nf’ )?
(3.11) nlE (= g(X.) - E |— g(x. ) )%l
u'n k=0 k 'n k=0 k

4 0 2 2 2 P72 nt
-1 k)-:o E o (X )-E g (X)) + 2 kzo t-zﬂ(lug(xk)g(xz)-z‘g(xk)q(xl))| .

Now, PP geometrically fast (see Corollary 4.1.5 of Kemeny and Snell (1960)) so there

exist constants a > 0 and 0 < p < 1 such that Il’);j - 'j| < apk. Thus, for ¢t > k,

k 2=k
Iz g(x,)q(x,) - E g(x )g(X,){ = '1):3 u gL, - T z (P = v )etr)]
4

< lgl2 2 u‘nzp" - Iqlznzp‘u2

i,3,r

where 1gl = max [g(i)]|. This ineguality, together with Theorem 2.5, allows one to bound
i
(3.11) by

n=2 n-t
Ib gl + 2197 T T oot = ocm .

k=0 fL=k+1
Application of (3.4) completes the proof. ||
Theorem 3.10 allows us to obtain an asymptotic formula for the mean square error of
the estimator r,(m,f) used in the method of replication. By {1.2), and Theorems 2.5,

3.3, and 3.10,

-10-
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2 2 2
B (e (m,0) - w)? - lu(:t(-.q))z -% (B (r (1,9))" - B r (1,9)) + b (ug)
2 1 2 1
=L err - me - e . 0(:5) '

t

an analogous expansion holds in the discrete time setting.

=fl=
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4. SOLUTION TO CONJECTURES OF HAZEN AND PRITSKER

In their study of continuous time Markov chains, Hazen and Pritsker considered the
dependence of s(f) on scaling of the generator Q. Writing s(Q,f) to indicate the
dependence of s(f) on Q, they showed that if a > 0, then lz(Q,f) = lz(Q,f)/G for
finite state processes and conjectured that the same result holds for countable state
processes, as well. The following theorem answers their conjecture (see Peller (1971), p.
326-32 for definitions and results on Markov jump processes).

(4.1) Theorem. Let Q be an irreducible conservative (i.e. >0 for i %3,

-» ¢ 911 - - IQ“) generator. If the minimal process {xt} corresponding to Q
b

satisfies
t
’u{U (£(x ) - r(£))as) < »/t s(Q,£1} + P(N(O,1) < x}
0
as t + =, then the minimal process {;e} corresponding to aQ, for a > 0, satisfies
t ~
P A(/ (ex) - r(£)188) < 2/t stoQ,£)} » P{NCO,1) < x}
0

ana o*(@,0) = s%(Q.£)/0.

Proof. Since {xt} is the minimal process corresponding to @, it follows that it may be
constructed via a discrete time Markov chain {Yk} that determines the sequence of states
visited by X., with the holding time in the xth state visited given by an exponential
random variable with parameter q(Y, ) (q(i) = <Q;4). On the other hand, the minimal process
;t associated with o has the gsame embedded discrete time chain (Yk}, but with
holding times determined by exponential random variables with parameters uq(\'k). Hence,

-

~
one can represent X via xt =X at’! 90 that

t

S - tenas)el2e 2

“ at L)
([ tex)) - eeenas)e2e!/2 o (4 (£,
0 0

t .
= a'2(] (ex) - rienas)e'?,
0

from which the theorem follows. ||

)2~
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An application of the result shows that the variance constant sz(Q.f) for the queue-

length process associated with an M/M/1/= queue with arrival rate al and service rate

w .
R/
-

. ap is proportional to 1/a (see p. 31 of Hazen and Pritsker (1980)).

Before proceeding to the second conjecture of Hazen and Pritsker, it is convenient to

Wy 5y Ty

discuss a second group of formulas for s2(f), based on the regenerative structure of
finite state Markov chains. The regenerative property dictates that blocking the sample
path of the process according to consecutive entrance times Tj into some fixed state,

say i, yields a sequence of independent and identically distributed random variables. It

is to be expected, then, that the variance constant sz(t) can be evaluated in terms of

2: quantities expressed over a single regenerative block. In fact, it can be shown that (see
b Smith (1955), Theorem 9)
" T
2 1 2
b (4.2) s () =g ([ (£(x) - nf)as)°/E T
“ i 0 s i1
?: where !1(') denotes the expectation conditional on Xg =i (a similar formula holds in
discrete time; see Chung (1966), p. 99). Hordijk, Iglehart, and Schassberger (1976) derive

matrix-theoretic expressions for the numerator and denominator of (4.2). From a historical

viewpoint, it is interesting to note that there is a third group of formulas for .2(t),

based on the eigenstructure of the transition matrices; see Romanovsky (1970), p. 241.
Returning now to the second conjecture, consider a capacity one single server queue

with Poisson arrivals and Erlang-p service times, with inter-arrival and service time means

given by 1/A and p/u respectively. If one is interested in the variance constant
associated with the number of customers in queue, then the method of stages shows that the
constant may be evaluated by considering lz(f) for the continuous time Markov chain

described by the (p + 1) by (p + 1) generator

-2 0 0 «ee A
u -u 0 «eo 0
0 “H eos
Q= . uo uc °
0 ¢oe O 1] -y
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where f = (0,1,1,.4.,1) (i.e. £ 1is one s0 long as the customer is in service). Writing

.z(p.u.!) to denote the dependence of lz(f) on p and J, the conjecture of Hazen and

Pritsker was that for u > 0,
lz(p.pu.!) -1 -2(1.u.!) .

Relation (4.3) can be most easily proved by using (4.2). Let zo,z,....,zp be independent
exponential random variables with lzo = 1/\ and !z1 = 1/pu for i > 1. Then,
(4.4) BT, = E(Z) + .co ¢ zp) = 1/A + 1/u

T

' 2 § 2
(4.5) :1(‘{ (£(x) - wf)as)” = u (-vez, + RS z,(1 - xf))

- (.g)zlz.q. (1 - 'f)z—%-—"-_i- (L"__') ’
X put A+ P

since #%f = )\/() + p). Substituting (4.4) and (4.5) into (4.2), one gets

Ap
’
(A + u)3

s2ip.pu ) = (’; 1)

verifying (4.3). Incidentally, it is easily shown, using (4.2), that lz(p.pu.t) tends to
the variance constant associated with the constant service time version of the model as

P * ® as would be expected.

-14-




S. YORMULAS FOR THE SPECTRAL DENSITY

The spectral density of a discrete time Markov chain is defined by

- -»
ch) =% ] .‘**eov'(r(xoy.z(xk)) :

k==

for continuous time Markov chains, c()) 1is given by

c(A) =

-»
1 it
= _{ e Tcov (£(x.),£(X )4t .

The spectral density of finite state Markov chains may be computed via the following

theorea.

(S.1) Theorem. Let (xn} and [xt} satisfy the same assumptions as in Section 2. Then,

A

the inverse matrices P(A) » ([ - a + (0:l - 1)1)-1 and P(A\) = (R -0 + 1XI)-1 exist for

all A, and the spectral densities c()A) and c(A) are given by

“id) e

(5.2) 21;()) = £'(I - N)E + f'ﬂ'(;(-X) + ;(M - ll(o‘x + e
(5.3) 2We(A) = £'T(P(-A) + P(A) - 20/(1 + A%))e
Proof. We give the proof in the discrete time aperiodic case, the proofs in the other
cases being similar. Using (3.7), one gets

=12k . .lklt

. -
(5.4) Mc(A) = £'T(Z ~M)L + ] (e erre® - me .

k=1
Now, observe that

f RV

k=1

iin
e

(3.5) (Pk - - P + .-ixl) spa-fl=- (,M‘ -1 .

Also, it is evident that

- -

T e -mic ] wr-mce

k=1 . k=1
since Pk + I geometrically fast, and thus the sum in (5.5) converges to some limit, say
D(A). Taking limits in (5.5) yields

DAY -2 + et 1) ap -1

T

ala’ sl




o) + (- + e try a1

A

and thus PF(=-A) = (1 - 6 + (0-1 - 1)1)-' exists. Postmultiplying through (5.5) by

P(-A) and letting n + = proves that

'z' R
k=1

(5.6) (% - M = (P - MP(=A) .

It is easily verified that n;m = e“ll and combination of (5.4) and (5.6) leads easily
to (5.2). |1

Pormulas (5.2) and (5.3), together with Theorea 3.3, prove that 2%c(0) = cz(f) (see
(1.4)), justifying the use of spectral methods for finite state Markov chains. Returning
to the two state Markov chain introduced earlier, the computation of ;(X) is
straightforward, given that

1

(b a
eAbra-1)+eir D 2

Q) =

1 (e‘*(- +B) -b -

+
e ra-1+edPaem -b eas+p) -a

The formulas also yield some interesting qualitative information about the spectrum of
finite state Markov chains. Applying Cramer's rule to compute the inverse matrix ;(A)
shows that the elements of ;( A) are always rational polynomials in the indeterminate

.ﬂ = in fact, the polynomials describing the numerator and denominator sust be of degree
less than or equal to m. Consequently, the spectrum of a stationary digcrete time finite

state Markov chain corresponds to that of a finite order autoregressive moving average

process.
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